
www.manaraa.com

JITTA
JOURNAL OF INFORMATION TECHNOLOGY THEORY AND APPLICATION

Bartel Van de Walle acted the senior editor for this paper.

Ahmed, F. and L. F. Capretz, “A Framework for Process Assessment of Software Product Line,”
Journal of Information Technology Theory and Application (JITTA), 7:1, 2005, 135-157.

A FRAMEWORK FOR PROCESS ASSESSMENT OF
SOFTWARE PRODUCT LINE

FAHEEM AHMED, University of Western Ontario
Department of Electrical & Computer Engineering, London Ontario, Canada, N5A5B9,
Email: fahmed@engga.uwo.ca, Tel: 1-(519) 661-2111 Ext (81412), Fax: 1-519-850-2436

LUIZ FERNANDO CAPRETZ, University of Western Ontario
Department of Electrical & Computer Engineering, London Ontario, Canada, N5A5B9, Email: lcapretz@eng.uwo.ca,
Tel: 1-(519) 661-2111 Ext (85482), Fax: 1-519-850-2436

ABSTRACT

Software product line has emerged as an attractive phenomenon within
organizations dealing with software development process. It involves assembly of
products from existing core assets, commonly known as components, and
continuous growth in the core assets as production proceeds. Organizations
trying to incorporate the concept of software product line to reduce development
time and cost require certain rules to be followed for successful development and
management, they also require a direct procedure to evaluate the current
maturity level of the process. In this work certain rules for developing and
managing a software product line are put forward. Additionally, a fuzzy logic
based software product line process assessment tool (SPLPAT) has been
designed and implemented on the basis of developed rules for software product
line process assessment. SPLPAT can be used to assess the process maturity
level of software product line, and it provides an opportunity to handle
imprecision and uncertainty present in software process variables. Four case
studies were conducted to validate the framework, and results show that SPLPAT
provides a direct mechanism to evaluate current software product line process
maturity level within an organization. The results of the developed software
product line process assessment approach were compared with the existing
CMM-level of the organization in order to evaluate the reliability of the
presented approach and to find out how effectively an organization can execute
software product line process when it has already achieved a certain CMM level.

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 136

INTRODUCTION
The concept of software product line is

based on development of identical systems
having controlled variability among one
another. The term “software product line” is
widely used in North America whereas a
similar concept but with different terminology
like “product family” or “system family” is
being used in Europe (Linden 2002). A
software product line is a set of software-
intensive systems sharing a common, managed
set of features that satisfy the specific needs of
a particular market segment or mission and
that are developed from a common set of core
assets in a prescribed way (Clements 2002).
Software product line is gaining popularity
over the time due to economics, but there has
not been much research to establish
appropriate rules as guidelines for software
product line development or to come up with

procedures to assess the maturity level of
software product line process within an
organization.

The aim of this research is to introduce
a set of rules based on best-known practices of
the software industry as well as to create a
fuzzy logic-based framework and tool for
process assessment of software product line
within an organization. The focus of the
software process assessment framework is to
put forward a methodology for process
assessment, particularly that of software
product line. The correlation between CMM
and the presented approach is beyond the
scope of this work. The work presented in this
paper does not propose an alternate
methodology for CMM; rather it concentrates
on developing a methodology for process
assessment of software product line only. The
consideration of CMM in this work addresses

CONTRIBUTION

The research work presented in this paper makes a considerable contribution to
information technology, particularly in the area of software product line, which is a relatively
new methodology of software development. The major contributions are as follows:

• The software product line qualification rules presented in this paper aim at filling the
research gap between concise guidelines and appropriate rules for developing and
managing software product line.

• These rules assist an organization in developing an infrastructure for software product
line, based on certain process requirements and on continuously monitoring the process at
development and management levels.

• The software product line process assessment approach presented in this research work is
novel; there had been no work done yet in this area, to the best of our knowledge.

• This work identifies the key process areas of software product line, ones that are used to
perform the software process assessment within an organization.

• The knowledge-based software process assessment will help organizations to handle the
imprecise and uncertain nature of software process data, and it provides them a more
reliable assessment.

• The developed tool, SPLPAT can be used as a direct measurement approach for process
assessment, particularly to software product line development and fills the research gap of
process assessment approach to software product line.

This work is expected to be very interesting to those performing research in software
process assessment practice and its improvements. The software community, particularly
developers, managers and practitioners will benefit by understanding the software product line
process in a concise and prescribed way. This research will help them to evaluate their current
process maturity level, and this in turn will assist management’s decision-making process in
their efforts to improve the productivity of the development process.

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 137

the following:

• In order to evaluate the reliability of the
proposed approach, we compared the
software product line process assessment
with the existing CMM levels achieved by
the organizations under study. The fuzzy
logic approach presented in this work
transforms the software product line
process variables into CMM levels as
output. The purpose of this transformation
is to investigate the extent of reliability of
the proposed approach and compare it
with an existing standardized approach
like CMM.

• Another aspect of CMM involvement with
this presented approach is to investigate
the impact of already achieved CMM
level on software product line process.
The case studies presented in this paper
are used to find out how effectively an
organization can execute a software
product line process when it has already
achieved a higher CMM level.

• The imprecision and uncertainty present
in software process data is investigated
and the lesson learned from case studies
presented in this work supports the
concept that fuzzy logic use in software
product line process assessment handles
imprecision and uncertainty in a much
better way compared to other standard
methods; it also provides more reliable
assessment.

FUZZY LOGIC AND SOFTWARE
PROCESS ASSESSMENT

The term fuzzy logic was introduced by
Zadeh (1965) to handle situations where
precise true/false values cannot be determined.
Fuzzy logic is a form of algebra, one that deals
with a range of values from “true” to “false”
for the purpose of decision-making, using
imprecise data. Zadeh (1992) elaborated to say
that the purpose of fuzzy logic is to provide
concepts and techniques that represent and
derive knowledge that is imprecise, uncertain
or lacking reliability. Software process is
defined by certain activities performed at
development and management levels. Maturity
assessment of software process requires
quantitative data about how effectively those

activities are being performed. For example, if
we consider an activity like “requirements
engineering” performed during software
process then we cannot apply traditional
“yes/no” answers or “zero/one” logic to it,
because they indicate only that requirements
engineering is done or not.

Figure 1 represents boolean logic for
assessment of maturity for requirements
engineering; it handles only two states: either
the activity is performed or not- there is no
intermediate stage present, and the fact is that
requirements engineering might be performed
partially but not completely. In order to handle
this imprecision and uncertainty, Figure 2
illustrates the use of fuzzy logic to represent
quantitative assessment of requirements
engineering activity over the range of values.
The membership function in the domain of 0
to 1 precisely defines how much the activity is
performed, for example 0.3 indicates slightly
performed and 0.95 illustrates definitely
performed.

Research has been done in order to
address the imprecision and uncertainty
present in software process variables.
Büyüközkan, Kahraman and Ruan (2004)
proposed a methodology to improve the
quality of decision-making in software
development project under uncertain
conditions. The proposed methodology is
based on fuzzy analytic hierarchy process
modeling to deal with uncertainty and
vagueness arising from subjective perception
and experience of humans in the decision
process. Using a fuzzy logic based approach;
Cimpan and Oquendo (2000) monitored
software processes and concluded that fuzzy
logic offers significant advantages over other
approaches due to its ability to naturally
represent uncertain and imprecise information.
Sun Sup, Sung Deok, and Yong Rae (2002)
proposed a fuzzy logic based software quality
prediction model to analyze the software
process data for the purpose of software
process improvement. Ziv and Richardson
(1997) presented the concept of “maxim of
uncertainty in software engineering” (MUSE),
which states that uncertainty is abundant and
inevitable in software development. Xiaoqing,
Kane and Bambroo (2003) put forward an
intelligent software early warning system

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 138

Figure 1. Boolean Logic for Requirement
Engineering Activity Assessment

Figure 2. Fuzzy Logic for Requirement
Engineering Activity Assessment

based on fuzzy logic, one that assesses risks
associated with poor quality in software
development. The proposed approach aims at
handling incomplete, inaccurate, and imprecise
information, and resolves conflicts in an
uncertain environment.

SOFTWARE PRODUCT LINE RULES
The concept of software product line

has become an attractive phenomenon within
organizations dealing with software
development. Organizations attempting to
incorporate this concept require certain rules to
be followed for effective development and
management. There is a need to define and
summarize all the necessary guidelines and
principles for software product line
development and management activities as set
of rules so that they should be carefully
followed for successful outcomes. The rules
are categorized as core asset development
rules, product development rules, and
management rules, and cover the three
essential activities of software product line
development and management. The general
structure of the rules consists in a “statement
portion” and a “discussion portion”.

Statement: defines the rule

Discussion: elaborates the rule, with possible
implications of not following it.

CORE ASSET DEVELOPMENT RULES
Core assets are developed to create

products in a software product line. The most

vital core asset in the repository is architecture,
because all subsequent products must share it.
These rules describe the general principles in
developing and managing a core asset
repository for further reuse of core assets
during software product development activity.
These rules elaborate the qualification criteria
of the components present in the core asset
repository. They highlight the importance of
managing a version control and utilization
history of the core asset in order to track all the
entities.

Core Asset Development Rule # 1

Statement: “All the core assets within a
software product line repository and resulting
products must be consistent with the scope of
the software product line.”

Discussion: DeBaud and Schmid (1999)
stressed that it is important to define the proper
scope of the software product lines, as it is
necessary for the strategic development of
product lines. Kishi, Noda and Katayama
(2002) found that the principal use of product
line scope is to define the product line and the
products that comprise the product line. Once
the scope of software product line is defined it
is necessary that the entire core assets be
consistent with the scope of product line. The
aim is to develop core asset for the product
line within the scope of the product line so that
they can be utilized while developing products.
The products developed should fall within the
scope of the product line as well, so that
product line requirements are met.

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 139

Core Asset Development Rule # 2

Statement: “Every component present in the
core asset repository must define the
variability mechanism to tailor it for effective
utilization.”

Discussion: According to Czarnecki and
Eisenecker (2000), instead of developing and
deploying a “fixed” one-of-a-kind system, it is
now common to develop a family of systems
whose members differ with respect to
functionality or technical facilities offered.
Fitting the component into the product without
tailoring it is the easiest task, but often there
arises a need to make certain changes in the
components to meet the requirements for a
particular product. Every component present in
the core asset must clearly define the
variability mechanism to be used in order to
tailor it for reuse. A separate document must
be attached with each component, one that
elaborates this activity. A careful strategy
should be adopted to accommodate variability
among components so that changes will
remain within the scope of the product line.

Core Asset Development Rule # 3

Statement: ”Update core asset repository
constantly by adding new asset as product
lines progress.”

Discussion: If we use a proactive approach to
develop software product line, then initially all
the core assets are identified, and, as we
progress further, products resulting from the
product line tend to develop new core assets
which must be added to the repository so that
they can be reused for later products. If we use
an active approach to develop product lines,
we start developing products and core asset
generated during the development process that
constitutes the core asset repository. So
whatever approach we adopt to develop
software product line, the core asset repository
should be dynamic and should continue
increasing its size with the addition of
components. The information about the
updates of core asset repository must be
clearly and regularly communicated to the
developers.

Core Asset Development Rule # 4

Statement: “All the COTS present in or added
to core asset repository must satisfy the cost
benefit ratio for the organization.”

Discussion: COTS are software components
developed by vendors to provide specific
functionality; they can be used as a part of a
product and are readily available in the market.
Hall and Naff (2001) emphasized that use of
COTS elements can result in reduced
development cost, development and
integration risk, and development time. Voas
(1998) pointed out that developing software
with as much COTS functionality as possible
saves developers from reinventing the wheel,
but at the same time it is required that the
benefit-to-cost ratio satisfy the organizational
goal; otherwise it will considerably increase
the overall cost of the product. To achieve the
target of product development within budget,
all the COTS added to the core asset must
meet the cost-to-benefit ratio criteria for the
organization.

Core Asset Development Rule # 5

Statement: “A version control management
system should keep track of the core asset
development and utilization history.”

Discussion: Ambriola, Bendix and Ciancarini
(1990) confirmed that the goals of version
controls are to facilitate the efficient retrieval
and storage of several versions of the same
components and to enforce restrictions on the
evolution of a component so that such an
evolution is observable and controllable. The
core assets in the repository are to be used in
various products and their versions. It is
necessary to track the history of the utilization
of individual core asset in different products.
This history should clearly describe the
functionalities used, interface requirements,
and any modifications to accommodate the
core asset to a new product. If any
considerable modification is made, it should
be termed a new version of the same core asset
and ultimately added to the core asset
repository with an associated definition of its
parent.

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 140

PRODUCT DEVELOPMENT RULES
Products developed during software

product line are those viable entities that can
be utilized within an organization for specific
purposes or that can be placed in the market to
capture a business segment. These rules
describe the qualification criteria for the
products developed during software product
line activity based on the core asset present in
the core asset repository. These rules further
elaborate the scope of the products developed
and characteristics of the software product line.
These rules define the extent of the difference
among various products developed. Since
software product line is capable of producing a
number of products, the rules indicate that at
least more than one product should be
developed.

Product Development Rule # 1

Statement: “All the products within the
software product line must share a common
architecture.”

Discussion: Gomma and Farrukh (1999)
described software architecture as the overall
organization of a software system in terms of
its constituent elements, including
computational units and their interrelationships.
Bass, Clements and Kazman (1998) stated that
software architectures for product lines require
open architectures and reuse design approach.
The purpose of the software product line is not
just reuse; it targets the effective delivery of
shared architecture products to meet the
market demands from business interests. It is
necessary that all the products resulting from
product line share a common architecture, the
only criterion for them to be a part of the
family of products. This commonality among
the products, despite other differences or
variability, creates a product population.

Product Development Rule # 2

Statement: ”A variation among products
should remain within the scope of software
product line.”

Discussion: Robak and Pieczynski (2003)
observed that possible features of software
product line members vary according to the
needs of particular market segments or
purposes. The products from the software
product line may vary from one another in

quality, reliability, functionality, performance,
etc, but, as they share the common architecture,
the variation should not be so great that they
are no longer contained within the scope of the
product line. Those variations must be handled
systematically to accommodate changes in
various versions of the product. Variability
control mechanism should allow changes and
new features to be implemented in the
resulting products, thereby keeping them
within the scope of the product line.

Product Development Rule # 3

Statement: “Every product released from
product line should be a valid business case for
the organization.”

Discussion: The business cases define the
marketing strategy of the organization; they
explore the market for profitable business.
Boeckle (2002) pointed out that goals of
software product line are elaborated in
business cases, and they promote the product
line idea. John and Schmid (2001) concluded
that the decision of launching software product
line within an organization is based heavily on
deciding whether the product line development
will produce more benefits than its
implementation cost. Every organization
identifies potential business cases in order to
capture the market. It is necessary that each
product released from the software product
line be a valid business case for the
organization so that the organization can
ultimately achieve its financial goal along with
the justification of the product line itself.

Product Development Rule # 4

Statement: ”Software product line must
capable of producing a considerable number of
products, at least more than one.”

Discussion: The main aim driving software
product line is the development of a stream of
products from core asset. If the product line is
aimed to produce only one single product, then
the activity can be regarded as “just a
component-based development”, not a
software product line. Therefore the scope and
structure of the product line should be to
develop all those products that meet the
business case criteria for the organization.
Bandinelli (2001) investigated the idea that
adoption of product line engineering implies

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 141

the creation of a domain infrastructure,
including architectures, components, training
etc., all of which generally requires a
significant up-front investment. Software
product line must produce a considerable
number of products to gain profits and capture
market segment in order to justify the up-front
cost of adoption.

Product Development Rule # 5

Statement: “Every product released from the
software product line must meet the
qualification criteria of the organization.”

Discussion: Every organization defines its
parameters for the qualification of a product
along with the standard acceptance criteria. A
product is feasible only if it meets the
qualification criteria as defined earlier in its
development. Therefore the qualification
criteria of the software product line must be
clearly defined so that all the products
resulting from the development of software
product line meet those criteria. A
comprehensive quality assurance plan must
operate at all the organizational levels and
should encompass all the possible stages of
development from component to product, all
the way up to product line.

MANAGEMENT RULES
Management rules describe the

essential management activities that must be
followed and implemented for effective
utilization of the software product line concept.
Also, they integrate the associated processes
that are required for software product
development and management. The
management rules address both the
organizational and technical management
domains. They describe some of the essential
technical processes that have to be managed
and introduced at all levels of the organization.

Management Rule # 1

Statement: “A multi dimensional
configuration management approach should
handle the configuration management issues
present in the software product line. ”

Discussion: Zhang, Mei and Zhu (2001)
reported that configuration management
system manages the artifacts produced in the

development process, controls changes to the
software and its components, keeps track of
evolution, and thus assists the development
process. Configuration management issues are
imperative to address in software product lines,
as they deal with a number of resultant
products having different version and release
numbers as well as numerous core asset with
different versions. Therefore a multi-
dimensional approach of configuration
management should be adopted to cope with
the issues. Such an environment may be
defined as configuration management of the
configuration management system. In this
approach, separate configuration management
systems are applied to product and core asset,
and, on top of those two configuration
managements, another configuration
management handles the coordinated issues of
both.

Management Rule # 2

Statement: “A comprehensive description and
analysis of domain should be performed for
which the software product line is to be
developed.”

Discussion: John, Muthig, Sody and
Tolzmann (2002) considered that the goals of
a domain-analysis approach is to identify and
document requirements of a set of systems in
the same application domain in order to make
development and maintenance activities more
efficient. Comer (1990) found that domain
analysis is the systems engineering of a family
of systems in an application domain through
development and application of reusable asset.
Comer (1990) stressed that domain analysis
entails developing a complete and rigorous
domain model and associated generic
architecture as a precursor to developing a set
of reusable components for repeated
application in developing systems in the
domain. The domain analysis for software
product line will support the development as
well as reusing the core asset in development.

Management Rule # 3

Statement: “The return on investment (ROI)
of the software product line must meet the
organizational financial goal.”

Discussion: The construction of software
product line will be beneficial in terms of

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 142

finance only if the organizational ROI meets
the outcome of software product line. The
investment in the product line must justify
itself. It is generally agreed that the return on
software product line is heavily based on the
resultant products and gradually increases as
the number of products to be delivered to the
market increases. Buckle, Clements,
McGregor, Muthig and Schmid (2004)
claimed that product line engineering could
improve ROI from a set of products. The ROI
of product line project is heavily dependent on
which kind of approach has been used to
institutionalize software product line. For
example, in the proactive approach the upfront
cost is lower because first a core asset
repository is first established and then products
are built from those assets. R

Management Rule # 4

Statement: “Requirements of the software
product line must be clearly defined, analyzed,
specified, verified and managed.”

Discussion: Gause and Weinberg (1989)
reported that in the first stage of software
project, usually requirements, elicitation,
information and knowledge of the system
under construction are acquired. Kruchten
(1998) observed requirements management
process as a set of three activities: eliciting,
organizing, and documenting the system’s
required functionality and constraints;
evaluating changes to these requirements and
assessing their impact; tracking and
documenting tradeoffs and decisions. John and
Dorr (2003) pointed out that especially when
developing more than one product,
requirements elicitation is a complex task; in
depth knowledge of the problem domain often
is a prerequisite for a successful product
family. If we perform good requirement
management for the software product line, it
will assist in understanding the scope and
boundaries of the products to be developed, an
understanding which ultimately aids in
identifying core asset for the software product
line.

Management Rule # 5

Statement: “Requirements of the software
product line must define the fundamental
products and their features within the product
line.”

Discussion: Bertolino, Fantechi, Gnesi, Lami
and Maccari (2002) concluded that product
family requirements could, in general, be
considered as composed of a constant and a
variable part. The constant part includes all
those requirements dealing with features or
functionalities common to all the products
belonging to the family and which need not be
modified. The variable part represents those
functionalities that can be changed to
differentiate one product from another.
Software product line requirements define the
features of the products in the product line.
The engineering requirements of software
product line must yield the features of
fundamental product. It should describe the
core functionality which the products are
supposed to provide, the properties they must
exhibit, and the associated constraints and
quality parameters.

Management Rule # 6

Statement: “Organizational structure must
support the software product line concepts and
principles.”

Discussion: Software product line approach is
somewhat different from traditional software
development approach. It requires
considerable visualization, management
enforcement, communications, discussions and
elaborations of what must be done and what
can be done. Therefore, organizational
structures must support the concepts and
principles of software product line. Boeckle
(2002) found that transforming an organization
to create products as members of a product
family required installing corresponding
processes, organization structures, and
methods. The integral part of organization
structure is design teams; small groups of
people whose capabilities complement one
another and which are formed for a common
goal. There should be a clear definition of the
team and its associated tasks and duties.

Management Rule # 7

Statement: “All the three essential activities
of software product line development must be
performed iteratively.”

Discussion: Miller, Paradis and Whalen (1991)
found that iterative process minimizes both
risks and cost by combining both the well-

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 143

structured management techniques of the
waterfall process and the early validation
techniques of the evolutionary model. Fujii
and Kambayashi (2002) concluded that
iterative development process proceeds with
multiple iterations that typically consist of one
cycle of development activities such as
analysis, design, implementation, and testing.
The essential activities, core asset
development, management and product
development, performed during product line
development are linked and are highly iterative.
Core asset are used to develop new products,
and there is a continuing possibility of
accumulating large numbers of core asset
either as an outcome of new product
development or COTS. The management takes
its inputs from core asset and the development
phase and continuously gives feedback to both.
The iterative development approach will allow
interaction among these three essential
activities to support them.

SOFTWARE PRODUCT LINE RULES:
REMARKS

The rules presented in this section
cover some of the possible aspects of software
product line process. They can be further
enhanced to cover other aspects of software
product line development and management by
adding more rules. Each rule has the tendency
to be further divided into smaller sub-rules
based on the activities performed in a software
product line process. The further subdivision
into smaller domains would identify software
product line process at singleton level, which
would further help in understanding the whole
product line process. The further division of
the rules into smaller parts is beyond the scope
of this work.

DESIGN AND IMPLEMENTATION OF
SOFTWARE PRODUCT LINE PROCESS
ASSESSMENT TOOL (SPLPAT)

A fuzzy logic based tool to measure
performance of the process of software
product line is designed and developed on the
basis of rules for developing and managing
software product line. Since software product
line has three essential activities, i.e., core
asset development, product development, and

management, therefore the three-dimensional
approach for process assessment of software
product line as illustrated in Figure 3,
illustrates that:

• Process assessment of an individual
activity like product development, core
asset development, and management are
measured by using a fuzzy logic system
and by applying software product line
rules.

• Software product line process assessment
is measured by applying the process
assessment of individual activities like
product development, core asset
development and management to the
fuzzy logic system.

Every fuzzy logic system requires
certain inputs to process; therefore in order to
take inputs in the form of rules for developing
and managing software product line to the
designed fuzzy logic system for process
assessment, the following questions (Table 1)
were asked. The crisp input to the fuzzy logic
system depends on the values entered for each
question in the range of 0 to 50. The value 0
reflects the lowest, whereas 50 the highest
rating of the specified activity of the software
product line process.

ARCHITECTURE OF THE TWO-
VARIABLE FUZZY LOGIC SYSTEM

Figure 4 illustrates a two-variable fuzzy
logic system designed for software product
line process assessment. It takes two variables
as an input, and they can be any combination
of two questions presented in Table 1. These
two variables perform a fuzzification process
which converts the crisp input into a fuzzy
membership mapping that is applied to the
inference engine, which in turn interacts with
rule base to select the applicable rules based
on the input variable values. The fuzzy output
is then defuzzified to retrieve a crisp output.
The rule base contains nine rules designed for
software product line process assessment,
which depicts an output based on the values of
the input.

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 144

Figure 3. Three Dimensional Process Assessment of Software Product Line

The two variable approach of fuzzy

logic is based on associative property of fuzzy
sets. Since the questions presented in Table 1
can be further increased to accommodate other
possible aspects of software product line,
therefore this design choice can easily
accommodate further expansion in input to the
system. The input and output variables are
represented by trapezoid function. The
trapezoid function retains highest membership
value of 1 up to a required interval. Using min
operator carries out fuzzy implication, and
using max-min operator performs composition.
Centroid method is selected for
defuzzyfication process. In centroid method,
the crisp value of the output variable is
computed by finding the variable value at the
center of gravity of the membership function.

The questions presented in Table 1 are
based on software product line rules; they
cover some of the possible aspects of software
product line process. One can add some more
questions to cover other aspects of software
product line development and management.
Furthermore each question has the tendency to
be further divided into smaller sub-level
questions. The further sub-division into
smaller questions would increase the precision
of the input values, thereby avoiding possible
biases associated with human judgment.

Figure 5 illustrates the basic
architecture of the fuzzy logic based process
assessment tool for software product line.
Figure 5 illustrates that the questions presented
in Table 1 are grouped together on the basis of
activities like core asset development, product
development, and management, and are

applied to fuzzy logic system to get the
process assessment of the three essential
activities of software product line, which are:

• Core Asset Development Assessment:
describes the maturity level of core asset
development activity.

• Product Development Process
Assessment: reflects the maturity level of
product development activity.

• Management Process Assessment:
shows the maturity level of technical and
organizational management activity
within an organization.

Software Process Input Variable A Fuzzy
Representation

The term crisp value in fuzzy logic
system is used to represent any precise
numerical value such as 2, –3, or 7.34 etc. The
crisp input to the system is selected to fall in
the range of 0 to 50. The crisp input values are
divided into three linguistic categories, i.e.,
“yes”, “no” and “partial”, in the range of 0 to
50:

• Yes: means that the activity is completely
performed and is represented in the range
of 33.0 to 50.0.

• Partial: means that the activity is
performed but not completely, and is
represented in the range of 16.5 to 38.0.

• No: means that the activity is not
performed and it is represented in the
range of 0 to 21.5.

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 145

Table 1. Software Product Line Process Assessment Input Question

Core Asset Development Input Questions

Question 1. Are all of the core assets within the software product line repository and the resultant
products consistent with the scope of software product line?

Question 2. Do all the components present in the core asset repository define the variability
mechanism to tailor them for effective utilization?

Question 3. Do all the COTS present or added into core asset repository satisfy the cost benefit ratio
for the organization?

Question 4. Is the core asset repository updated constantly by adding new asset as the product line
progresses?

Question 5. Does a version control management system keep track of the core asset development
and utilization history?

Product Development Input Questions
Question 6. Do all the products within the software product line share a common architecture?
Question 7. Does the variation among products remain within the scope of software product line?

Question 8. Is every product released from the product line a valid business case for the
organization?

Question 9. Does the software product line produce a considerable number of products, or at least
more than one?

Question 10. Does every product released from the software product line meet the qualification
criteria of the organization?

Management Input Questions

Question 11. Is any configuration management system used to address the configuration
management issues present in the software product line?

Question 12. Is a comprehensive description and analysis of domain performed for the software
product line?

Question 13. Does the ROI (Return on Investment) of the software product line meet the
organization’s financial goal?

Question 14. Are the requirements of the software product line clearly defined, analyzed, specified,
verified and managed?

Question 15. Does the requirement of the software product line define the fundamental products and
their features within the product line?

Question 16. Does the organizational structure support the software product line concepts and
principles?

Question 17. Are the essential activities of software product line development performed iteratively?

A trapezoid function is used to

represent the mapping between fuzzy
membership in the range of 0 to 1, and crisp
input values in the range of 0 to 50. The
Equation-I represents the mathematical model
of the trapezoid function. The values of the
variables a, b, c and d, in the equation, define
the shape of the trapezoid. The graphical
representation of trapezoid function along with
variables a, b, c, and d, is represented in Figure
6, which illustrates that the choice of variables
a, b, c and d determine the shape of the
trapezoid. Table 2 shows the distribution of
linguistic variables yes, no and partial in the
range of 0 to 50, and describes the values for
variables a, b, c and d, in Equation-I for a
mapping between linguistic variable and fuzzy
membership values. Figure 7 illustrates the

distribution of input linguistic variables, yes,
no and partial in the range of 0 to 50, and
fuzzy membership mapping in the range of 0
to 1.

The distribution of values from 0 to 50
among the linguistic variables no, partial and
yes is based on equality in the range to observe
maximum membership of 1 and equal
overlapping regions among them. The
tolerance is ± 0.5. The trapezoid values “b”
and “c” presented in Table 2 illustrates that all
the three linguistic variables no, partial and yes
retain a fuzzy membership of 1 at a range of
11.5 ± 0.5. The overlapping regions of 5.0
among the linguistic variables are defined by
trapezoid values “a” and “d” presented in
Table 2.

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 146

Figure 4. Two Variable Fuzzy Logic System for Software Product Line

Figure 5. Architectural View of SPLPAT

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 147

Equation-I Figure 6. Trapezoid Function

Table 2. Input Values Linguistic, Crisp and Fuzzy Membership

Trapezoid Function Variable Values For Input
Fuzzy Membership Mapping Linguistic Value Crisp Value Range

a b c d
Yes 33.0 to 50 33.0 38.0 50.0 50.0
No 0 to 21.5 0.0 5.0 16.5 21.5
Partial 16.5 to 38.0 16.5 21.5 33.0 38.0

Figure 7. SPLPAT Crisp Input -Fuzzy Membership Mapping

Software Process Output Variable A Fuzzy
Representation

The crisp output of the system is
selected to fall in the range of 0 to 50. The
crisp output values are divided into five
linguistic categories, i.e., initial, repeatable,
defined, managed and optimizing in the range

of 0 to 50, similar to the CMM approach, and
described as following:

• Initial: defined in the interval of 0.0 to
15.0

• Repeatable: defined in the interval of
10.0 to 25.0

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 148

• Defined: defined in the interval of 20.0 to
35.0

• Managed: defined in the interval of 30.0
to 45.0

• Optimizing: defined in the interval of
40.0 to 50.0

A trapezoid function is used to
represent the mapping between fuzzy
membership in the range of 0 to 1, and crisp
output values in the range of 0 to 50. Table 3
illustrates the distribution of linguistic output
variables, initial, repeatable, defined, managed
and optimizing in the range of 0 to 50 and
shows the values for variables a, b, c and d, in
Equation-I for a mapping between linguistic
variable and fuzzy membership values. Figure

8 illustrates the distribution of output linguistic
variables in the range of 0 to 50 and fuzzy
membership mapping in the range of 0 to 1.

The distribution and choice of values
from 0 to 50 among the linguistic variables
initial, repeatable, defined, managed and
optimizing is based on equality in the range to
observe maximum membership of 1 and equal
overlapping regions among them. The
trapezoid values “b” and “c” presented in
Table 3 illustrates that all the five linguistic
variables, initial, repeatable, defined, managed
and optimizing retain a fuzzy membership of 1
at a range of 5.0. The overlapping regions of
5.0 among the linguistic variables are defined
by trapezoid values “a” and “d” presented in
Table 3.

Table 3. Output Values Linguistic, Crisp and Fuzzy Membership

Trapezoid Function Variable Values For Output
Fuzzy Membership Mapping Linguistic Value Crisp Value Range

a b c d
Initial 0.0 to 15.0 0.0 5.0 10.0 15.0
Repeatable 10.0 to 25.0 10.0 15.0 20.0 25.0
Defined 20.0 to 35.0 20.0 25.0 30.0 35.0
Managed 30.0 to 45.0 30.0 35.0 40.0 45.0
Optimizing 40.0 to 50.0 40.0 45.0 50.0 50.0

Figure 8. SPLPAT Output Crisp-Fuzzy Membership Mapping

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 149

Fuzzy Logic Rules of Software Product Line
Process Assessment

The fuzzy knowledge rule base is
created to contain fuzzy logic rules for fuzzy
reasoning, particularly for software product
line process assessment tool. The rules
generally define a combination of input crisp
pattern and respective output. On the basis of
combination of input, appropriate output
mapping is defined in the fuzzy logic rules.
The variables defined as input 1 and input 2
can be any combination of questions presented
in Table 1. There are nine rules for software
product line process assessment tool, as listed
below:

If (input 1 && input 2 ==”Yes”) Then
output =”Optimizing”

If (input 1 && input 2 ==”No”) Then output
=”Initial”

If (input 1 && input 2 ==”Partial”) Then
output =”Repeatable”

If (input 1=”Yes” && input 2 ==”No”)
Then output =”Defined”

If (input 1=”No” && input 2 ==”Yes”)
Then output =”Defined”

If (input 1=”Yes” && input 2 ==”Partial”)
Then output =”Managed”

If (input 1=”Partial” && input 2 ==”Yes”)
Then output =”Managed”

If (input 1=”Partial” && input 2 ==”No”)
Then output =”Repeatable”

If (input 1 =”No” && input 2 ==”Partial”)
Then output =”Repeatable”

Figure 9 illustrates the internal
processing sequence of software product line
process assessment tool, in which a
combination of two questions from Table 1 are
placed at the input of two-variable fuzzy logic
systems described in Figure 4. The
intermediate outputs are collected and passed
to the two-variable fuzzy logic system at the
next level and this procedure keeps on moving
until we collect the individual software
product line activity like core asset
development, management, and product
development assessment, which are later
applied to next stage fuzzy logic system to

eventually get the overall software product line
process assessment.

CASE STUDIES & CRITICAL
DISCUSSION

Four case studies were conducted in
order to validate the results achieved from the
software product line process assessment tool.
The input questionnaire (shown in Table 1)
was distributed to a number of organizations to
obtain actual data about current process status
within the organization, as shown in Table 4.
Some large and well-known organizations
extensively involved in software development,
under an agreement to keep the name of
organization confidential, provided us with
actual data. For experimental purposes the
organizations are code named as “A”, “B”, etc.
Organizations were asked to inform us of the
actual CMM-level that they had achieved. The
results observed from software product line
process assessment tool are compared with the
CMM-level achieved by the organization.

DISCUSSION OF CASE STUDY –I
The CMM-level of organization “A” is

level 2, i.e., “repeatable”, and software product
line process assessment tool has also evaluated
it as level 2.The results in Table 5 indicate that
core asset development activity is performed at
a maturity level of 3 to 4, meaning that level 3
has been achieved and level 4 is close to
achieve. Product development activity is
performed at a much higher maturity of level 3.
The management activity has a maturity level
of 1, which lowers the overall process
assessment to level 2, i.e., “repeatable”.

Figure 10 describes the processing
sequence and intermediate results at each of
the stages during software product line process
assessment of case study -I. The main
conclusion of case study -I indicates that
organization “A” can improve the overall
software product line process by concentrating
on management activity. A considerable
improvement in the management process is
required to improve the overall software
product line process in organization “A”.
Figure 11 and Figure12 are input and output
screens of SPLPAT.

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 150

Figure 9. Internal Processing Sequence of Software Product Line Process Assessment Tool

Table 4. Software Product Line Process Data of Case Studies

Organization & Case Study #
‘A’ ‘B’ ‘C’ ‘D’

Rule-Input #

Case Study -1 Case Study -2 Case Study -3 Case Study -4
1 35 40 32.5 40
2 40 40 27.5 30
3 25 15 30 35
4 35 30 37.5 30
5 25 50 40 20
6 40 15 37.5 40
7 10 15 32.5 35
8 5 30 30 35
9 50 50 35 30
10 45 40 37.5 30
11 30 50 32.5 25
12 10 40 35 20
13 15 40 30 30
14 20 30 35 35
15 30 40 32.5 35
16 35 45 30 35
17 7 25 37.5 35

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 151

Table 5. Results of Software Product Line Process Assessment of Case Study-I

Activity Result Linguistic Output CMM Level
Core Asset Development Assessment 34.84 Defined to Managed 3 to 4
Product Development Process Assessment 29.27 Defined 3
Management Process Assessment 8.64 Initial 1
Software Product Line Process Assessment 17.5 Repeatable 2

Figure 10. Processing Sequence and intermediate Results for CASE Study -I

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 152

Figure 11. Data Entry Input Screen of SPLPAT

Figure 12. Graphical Output Screen of SPLPAT

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 153

DISCUSSION OF CASE STUDY – II
The CMM-level of organization “B” is

level 5, i.e., “optimizing” and the software
product line process assessment tool has also
evaluated it as level 5.The results in Table 6
show that core asset development activity is
performed at a higher maturity level of 4. The
product development activity is also
performed at a very high maturity of level 4.
The management activity is performed at a
maturity level of 4 to 5, meaning they have
achieved level 4 and now are very close to
level 5. The conclusion of the case study –II
highlights that the organization “B” has
achieved a CMM-level 5.

DISCUSSION OF CASE STUDY – III
The CMM-level of organization “C” is

level 3, i.e., “defined”, and the software
product line process assessment tool has also
evaluated it as level 3.The results presented in
Table 7 show that core asset development
activity is performed at a high maturity level
of 4. Product development activity is also
performed at a maturity of level 3 to 4,

meaning that level 3 has been achieved and
level 4 is the next target. The management
activity is performed at a lower maturity level
of 2. Case study – III confirms that the
organization “C” has achieved a CMM-level 3
and that there is a need to improve the
management activity to increase the overall
maturity level of the organization.

DISCUSSION OF CASE STUDY – IV
The CMM-level of organization “D” is

level 2, i.e., “repeatable”, and the software
product line process assessment tool have also
evaluated it as level 2. Table 8 indicates that
core asset development activity is performed at
a maturity level of 3. The Product
development activity is performed at a higher
maturity of level 3 to 4. The management
activity is performed at a lower maturity level
of 2. The conclusion of the case study – IV
pointed out that the organization “D” has
achieved a CMM-level 2 and there remains a
need to improve the management and core
asset development activity to increase the
overall maturity level of the organization.

Table 6. Results of Process Assessment of Case Study - II

Activity Result Linguistic Output CMM Level
Core Asset Development Assessment 37.5 Managed 4
Product Development Process Assessment 37.5 Managed 4
Management Process Assessment 44.67 Managed To Optimizing 4 to 5
Software Product Line Process Assessment 46.11 Optimizing 5

Table 7. Results of Process Assessment of Case Study - III

Activity Result Linguistic Output CMM Level
Core Asset Development Assessment 37.5 Managed 4
Product Development Process Assessment 34.84 Defined to Managed 3 to 4
Management Process Assessment 17.5 Repeatable 2
Software Product Line Process Assessment 27.07 Defined 3

Table 8. Results of Process Assessment of Case Study - IV

Activity Result Linguistic Output CMM Level
Core Asset Development Assessment 25.65 Defined 3
Product Development Process Assessment 34.84 Defined to Managed 3 to 4
Management Process Assessment 17.5 Repeatable 2
Software Product Line Process Assessment 17.5 Repeatable 2

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 154

LESSON LEARNED
The case studies presented in this work

lead to a number of lessons learned. One of the
objectives of this research was to investigate
the impact of already achieved CMM level on
software product line process. Table 9 shows
the comparison of process assessment carried
out by using SPLPAT and already achieved
CMM level by the organizations under study.
We observed from case studies that an
organization at a higher CMM level has a
better tendency to carry out software product
line activities in more effective way. This
leads to the conclusion that the higher the

CMM level of an organization, the higher is
the software product line process maturity.

The other objective of this study was to
investigate how effectively imprecision and
uncertainty present in software process data is
handled by using fuzzy logic in software
product line process assessment. Table 10
illustrates the comparison of the assessment
carried out by using statistical average method
and fuzzy logic evaluation. The results of both
the approaches are compared with already
achieved CMM levels of the organizations
under study. The lesson learned from this
investigation supports the concept that fuzzy

Table 9. Comparisons of SPLPAT Process Assessment Results with CMM-Level

Organization CMM-Level (Already Achieved) Observed CMM-Level (By SPLPAT)
“A” 2 (Repeatable) 2 (Repeatable)
“B” 5 (Optimizing) 5 (Optimizing)
“C” 3 (Defined) 3 (Defined)
“D” 2 (Repeatable) 2 (Repeatable)

Table 10. Comparison of Fuzzy Calculation and Statistical Average Method

Organization & Case Study #
‘A’

‘B’

‘C’

‘D’

Rule-Input #

Case
Study -1

Case
Study -2

Case
Study -3

Case Study -4

1 35 40 32.5 40
2 40 40 27.5 30
3 25 15 30 35
4 35 30 37.5 30
5 25 50 40 20
6 40 15 37.5 40
7 10 15 32.5 35
8 5 30 30 35
9 50 50 35 30
10 45 40 37.5 30
11 30 50 32.5 25
12 10 40 35 20
13 15 40 30 30
14 20 30 35 35
15 30 40 32.5 35
16 35 45 30 35
17 7 25 37.5 35
Statistical Average 26.88

(Level 3)
35

(Level 4)
33.67

(Level 3 to 4)
32.23

(Level 3 to 4)
Fuzzy (SPLPAT)
Calculation

17.5
(Level 2)

46.11
(Level 5)

27.07
(Level 3)

17.5
(Level 2)

Actual CMM Level 2 Level 5 Level 3 Level 2

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 155

logic use in software product line process
assessment handles imprecision and
uncertainty in a much better way, compared to
other standard methods, and it provides more
reliable assessment.

CONCLUSION
In this research paper we have tried to

identify key process activities in the form of
rules for software product line development
and management. The developed rules cover
several possible aspects that require attention
by the technical and organizational
management in order to adopt successfully the
software product line approach. A software
product line process assessment framework is
developed to assist an organization to evaluate
the current maturity level of the process. On
the basis of the developed framework, a tool,
software product line process assessment tool
(SPLPAT), has been developed to evaluate the
current process maturity level within an
organization, and direct comparisons are made
to CMM. Following are the conclusions and
lessons learned during this work:

• The software process maturity assessment
determined by using CMM and SPLPAT
are the same, a fact that shows the extent
of reliability of the proposed approach.

• The lesson learned from case studies
presented in this work is that
organizations at a higher CMM level have
a greater tendency to execute software
product line process more effectively.

• Fuzzy logic provides an appropriate
approach to handle the uncertainty and
imprecision present in the software
process variables.

• Software product line rules provide a
basis for process maturity level
assessment of software product line as
they identify key process activities.

• Software product line process assessment
tool presented in this work can be used to
evaluate the current process status of
software product line process within an
organization.

Acknowledgement. We are thankful to the
Institute of Information Technology, National
Research Council Canada, for the permission
to use the NRC-FuzzyJ Toolkit for research
purposes. We are thankful to all those
organizations that provided us valuable
software product line process data for our
research. We are also thankful to those
anonymous reviewers and senior editor of this
paper for providing us with valuable
suggestions and recommendations to improve
the paper.

REFERENCES
Ambriola, V., L. Bendix, and P. Ciancarini, “The evolution of configuration management and version

control”, Journal of Software Engineering, 1990, 5:6, pp. 303-310.
Bandinelli, S., “Light-weight product family engineering”, Proceedings of the 4th International Workshop on

Product Family Engineering, Lecture Notes in Computer Science, Springer – Verlag, 2001, pp. 327-331.
Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Addison-Wesley, 1998.
Bertolino, A., A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Use case description of requirements for

product lines”, Proceedings of International Workshop on Requirements Engineering for Product Lines,
2002, pp.12 – 18.

Boeckle, G., “Adopting and institutionalizing a product line culture”, Proceedings of the 2nd Software
Product Line Conference, Lecture Notes in Computer Science, Springer – Verlag, 2002, pp. 49-59.

Buckle, G., P. Clements, J.D. McGregor, D. Muthig, and K. Schmid, “Calculating ROI for software product
lines”, IEEE Software, 2004, 21:3, pp. 23- 31.

Büyüközkan, G., C. Kahraman, and D. Ruan, “A fuzzy multi-criteria decision approach for software
development strategy selection”, International Journal of General Systems, 2004, 33:2-3, pp. 259-280.

Clements, P. and L.M. Northrop, Software Product Lines, Practices and Pattern, Addison Wesley, 2002.
Cimpan, S. and F. Oquendo, “Dealing with software process deviations using fuzzy logic based monitoring”,

ACM SIGAPP Applied Computing Review, 2000, 8:2, pp. 3-13.

www.manaraa.com

Faheem Ahmed and Luiz Fernando Capretz

 156

Comer, E.R., “Domain analysis: a systems approach to software reuse”, Proceedings of the Conference on
Digital Avionics Systems, 1990, pp. 224 –229.

Czarnecki, K. and U.W. Eisenecker, Generative Programming Methods, Tools and Applications, Addison
Wesley, 2000.

DeBaud, J. and K. Schmid, “A systematic approach to derive scope of software product lines”, Proceedings
of the 21st International Conference on Software Engineering, 1999, pp. 33-43.

Fujii, T. and Y. Kambayashi, “Strategies to suppress productivity degradation with unknown issues under
iterative development process”, Proceedings of the 1st International Symposium on Cyber Worlds, 2002,
pp. 121 – 126.

Gause, D.C. and G.M. Weinberg, Exploring Requirements-Quality Before Design, Dorset House Publishing,
1989.

Gomma, H. and G.A. Farrukh, “A reusable architecture for federated client/server system”, Proceedings of
the 5th Symposium on Software Reusability, 1999, pp. 113-121.

Hall, J. and R. Naff, “The cost of COTS”, IEEE Aerospace and Electronic Systems, 2001,16:8, pp. 20 –24.
John, I. and J. Dörr, “Elicitation of requirements from user documentation”, Proceedings of the Workshop

on Requirement Engineering: Foundations For Software Quality, 2003, pp. 3-12.
John, I. and K. Schmid, “Product line development as a rationale strategic decision”, Proceedings of the

International Workshop on Product Line Engineering, 2001, pp.31-35.
John, I., D. Muthig, P. Sody, and E. Tolzmann, “Efficient and systematic software evolution through domain

analysis”, Proceedings of the IEEE Joint International Conference on Requirements Engineering, 2002,
pp. 237 – 244.

Kishi, T., N. Noda, and T. Katayama, “A method for product line scoping based on a decision-making
framework”, Proceedings of the 2nd Software Product Line Conference, Lecture Notes in Computer
Science, Springer – Verlag, 2002, pp. 348-365.

Linden van der, F., “Software product families in Europe”: ESAPS & Café projects, IEEE Software, 2002,
19:4, pp. 41-49.

Mamdani, E.H., “Applications of fuzzy logic to approximate reasoning using linguistic synthesis”, IEEE
Transactions on Computers, 1977, 26:12, pp. 1182-1191.

Miller, F., R. Paradis, and K. Whalen, “Iterative development life cycle: a management process for large-
scale intelligent system development”, Proceedings of the 3rd International Conference on Tools for
Artificial Intelligence, 1991, pp. 520-521.

Kruchten, P., The Rational Unified Process: An Introduction, Addison-Wesley, 1998.
Robak, S. and A. Pieczynski, “Employing fuzzy logic in feature diagrams to model variability in software

product lines”, Proceedings of the 10th IEEE International Conference on Engineering of Computer-
Based Systems, 2003, pp. 305-311.

Sun Sup, S., C. Sung Deok, and K. Yong Rae, “Empirical evaluation of a fuzzy logic-based software
quality prediction model”, Fuzzy Sets and Systems, 2002, 127:2, pp.199-208.

Voas, J., “COTS software the economical choice”, IEEE Software, 1998, 15:2, pp. 16 –19.
Xiaoqing L., G. Kane, and M. Bambroo, “An intelligent early warning system for software quality

improvement and project management”, Proceedings of 15th IEEE International Conference on Tools
with Artificial Intelligence, 2003, pp.32-38.

Zadeh, L.A., “Fuzzy sets”, Journal of Information Control Engineering, 1965, pp. 338-353.
Zadeh, L.A., “Fuzzy logic and the calculus of fuzzy if-then rules”, Proceedings of the 22nd International

Symposium on Multiple-Valued Logic, 1992, pp. 480.
Zhang, L., H. Mei, and H. Zhu, “A configuration management system supporting component-based software

development”, Proceedings of the Conference on Computer Software and Applications, 2001, pp.25 – 30.
Ziv, H. and D.J. Richardson, “Constructing Bayesian-network models of software testing and maintenance

uncertainties”, Proceedings of International Conference on Software Maintenance, 1997, pp.100 – 109.

www.manaraa.com

A Framework for Process Assessment of Software Product Line

Journal of Information Technology Theory and Application (JITTA), 7:1, 2005. 157

AUTHORS
Faheem Ahmed is a PhD
candidate at University of
Western Ontario, Canada,
where he received his
Masters degree in
Electrical Engineering
with emphasis in
Software Engineering. He
received his M.Sc degree
in Electronics from

Quaid-e-Azam University, Islamabad,
Pakistan. Before joining Western as graduate
student he has been working in the software
industry for 10 years. During his professional
career he has been actively involved in
requirements engineering, design,
development and testing of software products.
His current research interests are software
engineering, software product line process
modeling and process assessment, CASE tools,
fuzzy logic, object-oriented design and
programming languages. He is a student
member of IEEE.

Dr. Capretz has over
20 years of
experience in the
software engineering
field as a practitioner,
manager and educator.
Before joining the
University of Western
Ontario, in Canada,

he worked at both technical and managerial
levels, taught and did research on the
engineering of software in Brazil, Argentina,
England and Japan since 1981. He was the
Director of Informatics and Coordinator of the
computer science program in two universities
(UMC and COC) in the State of Sao
Paulo/Brazil. He has authored and co-authored
over 50 peer-reviewed research papers on
software engineering in leading international
journals and conference proceedings, and co-
authored the book, Object-Oriented Software:
Design and Maintenance, published by World
Scientific. His current research interests are
software engineering (SE), human factors in
SE, software product lines, and software
engineering education. Dr. Capretz received
his Ph.D. from the University of Newcastle
upon Tyne (U.K.), M.Sc. from the National
Institute for Space Research (INPE-Brazil),
and B.Sc. from UNICAMP (Brazil). He is a
senior member of IEEE, and a MBTI Qualified
Practitioner.

